To survive extreme environmental conditions, and in response to certain developmental and pathological situations, eukaryotic organisms employ the catabolic process of autophagy.
This degradative pathway allows cells to eliminate large portions of the cytoplasm, from aberrant protein aggregates to superfluous or damaged organelles and even entire organisms such as invading bacteria.
Structures targeted for destruction are sequestered into large double-membrane vesicles called autophagosomes and then delivered into the interior of the lysosome or vacuole, where they are consumed by resident hydrolases.
Autophagosome formation during selective autophagy is dependent upon the cargoes, and in all cases seems to involve expansion of the sequestering membrane.
Autophagy refers to lysosomal digestion of the cell’s own components. In this process, intracellular organelles and portions of cytosol are first sequestered from the cytoplasm in an autophagic vacuole formed from ribosome-free regions of the rough endoplasmic reticulum.
The vacuole fuses with lysosomes or Golgi elements to form an autophagolysosome (autophagosome). Autophagy is a common phenomenon involved in the removal of damaged organelles during cell injury and the cellular remodeling of differentiation, and it is particularly pronounced in cells undergoing atrophy induced by nutrient deprivation or hormonal involution.
The autophagic vacuoles are membrane-bound vacuoles within the cell that contain fragments of cell components (e.g., mitochondria, endoplasmic reticulum) that are destined for destruction and into which the lysosomes discharge their hydrolytic contents. The cellular components are then digested. Some of the cell debris within the autophagic vacuole may resist digestion and persist as membrane-bound residual bodies that may remain in the cytoplasm. An example of such residual bodies is the lipofuscin granules (lipofuscin deposits). When present in sufficient amounts, they impart a brown discoloration to the tissue (brown atrophy).
See also
degradative patways
References
Reggiori F, Klionsky DJ. Autophagosomes: biogenesis from scratch? Curr Opin Cell Biol. 2005 Aug;17(4):415-22. PMID: 15978794
Kondo Y, Kanzawa T, Sawaya R, Kondo S. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer. 2005 Sep;5(9):726-34. PMID: 16148885
Kroemer G, Jaattela M. Lysosomes and autophagy in cell death control. Nat Rev Cancer. 2005 Nov;5(11):886-97. PMID: 16239905
Levine B, Yuan J. Autophagy in cell death: an innocent convict? J Clin Invest. 2005 Oct;115(10):2679-88. PMID: 16200202
Edinger AL, Thompson CB. Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol. 2004 Dec;16(6):663-9. PMID: 15530778
Maria Cuervo A. Autophagy: in sickness and in health. Trends Cell Biol. 2004 Feb;14(2):70-7. PMID: 15102438
Larsen KE, Sulzer D. Autophagy in neurons: a review. Histol Histopathol. 2002;17(3):897-908. Re PMID: 12168801