Phylogenetic and diversity analysis of the mtDNA control region sequence variation of individuals from Europe and the Middle East distinguishes five major lineage groups with different internal diversities and divergence times. (#8659525#)
Consideration of the diversities and geographic distribution of these groups within Europe and the Middle East leads to the conclusion that ancestors of the great majority of modern, extant lineages entered Europe during the Upper Paleolithic. (#8659525#)
A further set of lineages arrived from the Middle East much later, and their age and geographic distribution within Europe correlates well with archaeological evidence for two culturally and geographically distinct Neolithic colonization events that are associated with the spread of agriculture. (#8659525#)
It follows from this interpretation that the major extant lineages throughout Europe predate the Neolithic expansion and that the spread of agriculture was a substantially indigenous development accompanied by only a relatively minor component of contemporary Middle Eastern agriculturalists. (#8659525#)
There is no evidence of any surviving Neanderthal lineages among modern Europeans. (#8659525#)
Haplogroup H is distributed throughout the entire range of Caucasoid populations and which originated in the Near East approximately 25,000-30,000 years ago, also took part in this expansion, thus rendering it by far the most frequent (40%-60%) haplogroup in western Europe.
A major Paleolithic population expansion from the "Atlantic zone" (southwestern Europe) occurred 10,000-15,000 years ago, after the Last Glacial Maximum.
A mtDNA marker for this expansion is Haplogroup V, an autochthonous European haplogroup, which most likely originated in the northern Iberian peninsula or southwestern France at about the time of the Younger Dryas.
Subsequent migrations after the Younger Dryas eventually carried those "Atlantic" mtDNAs into central and northern Europe. This scenario, already implied by archaeological records, is given overwhelming support from both the distribution of the autochthonous European Y chromosome type 15, as detected by the probes 49a/f, and the synthetic maps of nuclear data.
Clinal patterns of autosomal genetic diversity within Europe have been interpreted in previous studies in terms of a Neolithic demic diffusion model for the spread of agriculture. In contrast, studies using mtDNA have traced many founding lineages to the Paleolithic and have not shown strongly clinal variation. (#11078479#)
Y-chromosomal biallelic polymorphisms show significant clines for five of six haplogroups analyzed. Clines for two haplogroups, representing 45% of the chromosomes, are continentwide and consistent with the demic diffusion hypothesis. Clines for three other haplogroups each have different foci and are more regionally restricted and are likely to reflect distinct population movements, including one from north of the Black Sea. (#11078479#)
Populations are related primarily on the basis of geography, rather than on the basis of linguistic affinity. (#11078479#)
Mantel tests show a strong and highly significant partial correlation between genetics and geography but a low, nonsignificant partial correlation between genetics and language. (#11078479#)
Genetic-barrier analysis also indicates the primacy of geography in the shaping of patterns of variation. These patterns retain a strong signal of expansion from the Near East but also suggest that the demographic history of Europe has been complex and influenced by other major population movements, as well as by linguistic and geographic heterogeneities and the effects of drift. (#11078479#)
Two Paleolithic and one Neolithic migratory episode could have contributed to the modern European gene pool. (#11073453#)
References
Richards M, Macaulay V, Torroni A, Bandelt HJ. In search of geographical patterns in European mitochondrial DNA. Am J Hum Genet. 2002 Nov;71(5):1168-74. PMID: #12355353#
Torroni A, Bandelt HJ, Macaulay V, Richards M, Cruciani F, Rengo C, Martinez-Cabrera V, Villems R, Kivisild T, Metspalu E, Parik J, Tolk HV, Tambets K, Forster P, Karger B, Francalacci P, Rudan P, Janicijevic B, Rickards O, Savontaus ML, Huoponen K, Laitinen V, Koivumaki S, Sykes B, Hickey E, Novelletto A, Moral P, Sellitto D, Coppa A, Al-Zaheri N, Santachiara-Benerecetti AS, Semino O, Scozzari R. A signal, from human mtDNA, of postglacial recolonization in Europe. Am J Hum Genet. 2001 Oct;69(4):844-52. PMID: #11517423#
Rosser ZH, Zerjal T, Hurles ME, Adojaan M, Alavantic D, Amorim A, Amos W, Armenteros M, Arroyo E, Barbujani G, Beckman G, Beckman L, Bertranpetit J, Bosch E, Bradley DG, Brede G, Cooper G, Corte-Real HB, de Knijff P, Decorte R, Dubrova YE, Evgrafov O, Gilissen A, Glisic S, Golge M, Hill EW, Jeziorowska A, Kalaydjieva L, Kayser M, Kivisild T, Kravchenko SA, Krumina A, Kucinskas V, Lavinha J, Livshits LA, Malaspina P, Maria S, McElreavey K, Meitinger TA, Mikelsaar AV, Mitchell RJ, Nafa K, Nicholson J, Norby S, Pandya A, Parik J, Patsalis PC, Pereira L, Peterlin B, Pielberg G, Prata MJ, Previdere C, Roewer L, Rootsi S, Rubinsztein DC, Saillard J, Santos FR, Stefanescu G, Sykes BC, Tolun A, Villems R, Tyler-Smith C, Jobling MA. Y-chromosomal diversity in Europe is clinal and influenced primarily by geography, rather than by language. Am J Hum Genet. 2000 Dec;67(6):1526-43. PMID: #11078479#
Richards M, Macaulay V, Hickey E, Vega E, Sykes B, Guida V, Rengo C, Sellitto D, Cruciani F, Kivisild T, Villems R, Thomas M, Rychkov S, Rychkov O, Rychkov Y, Golge M, Dimitrov D, Hill E, Bradley D, Romano V, Cali F, Vona G, Demaine A, Papiha S, Triantaphyllidis C, Stefanescu G, Hatina J, Belledi M, Di Rienzo A, Novelletto A, Oppenheim A, Norby S, Al-Zaheri N, Santachiara-Benerecetti S, Scozari R, Torroni A, Bandelt HJ. Tracing European founder lineages in the Near Eastern mtDNA pool. Am J Hum Genet. 2000 Nov;67(5):1251-76. PMID: #11032788#
Semino O, Passarino G, Oefner PJ, Lin AA, Arbuzova S, Beckman LE, De Benedictis G, Francalacci P, Kouvatsi A, Limborska S, Marcikiae M, Mika A, Mika B, Primorac D, Santachiara-Benerecetti AS, Cavalli-Sforza LL, Underhill PA. The genetic legacy of Paleolithic Homo sapiens sapiens in extant Europeans: a Y chromosome perspective. Science. 2000 Nov 10;290(5494):1155-9. PMID: #11073453#
Torroni A, Richards M, Macaulay V, Forster P, Villems R, Norby S, Savontaus ML, Huoponen K, Scozzari R, Bandelt HJ. mtDNA haplogroups and frequency patterns in Europe. Am J Hum Genet. 2000 Mar;66(3):1173-7. PMID: #10712231#
Macaulay V, Richards M, Hickey E, Vega E, Cruciani F, Guida V, Scozzari R, Bonne-Tamir B, Sykes B, Torroni A. The emerging tree of West Eurasian mtDNAs: a synthesis of control-region sequences and RFLPs. Am J Hum Genet. 1999 Jan;64(1):232-49. PMID: #9915963#
Torroni A, Bandelt HJ, D'Urbano L, Lahermo P, Moral P, Sellitto D, Rengo C, Forster P, Savontaus ML, Bonne-Tamir B, Scozzari R. mtDNA analysis reveals a major late Paleolithic population expansion from southwestern to northeastern Europe. Am J Hum Genet. 1998 May;62(5):1137-52. PMID: #9545392#
Richards M, Corte-Real H, Forster P, Macaulay V, Wilkinson-Herbots H, Demaine A, Papiha S, Hedges R, Bandelt HJ, Sykes B. Paleolithic and neolithic lineages in the European mitochondrial gene pool. Am J Hum Genet. 1996 Jul;59(1):185-203. PMID: #8659525#
Cavalli-Sforza LL, Piazza A. Human genomic diversity in Europe: a summary of recent research and prospects for the future. Eur J Hum Genet. 1993;1(1):3-18. PMID: #7520820#
Richards M, Corte-Real H, Forster P, Macaulay V, Wilkinson-Herbots H, Demaine A, Papiha S, Hedges R, Bandelt HJ, Sykes B. Paleolithic and neolithic lineages in the European mitochondrial gene pool. Am J Hum Genet. 1996 Jul;59(1):185-203. PMID: #8659525#
Torroni A, Lott MT, Cabell MF, Chen YS, Lavergne L, Wallace DC. mtDNA and the origin of Caucasians: identification of ancient Caucasian-specific haplogroups, one of which is prone to a recurrent somatic duplication in the D-loop region. Am J Hum Genet. 1994 Oct;55(4):760-76. PMID: #7942855#