- Human pathology

Home > Resources in pathology > Databases in pathology > EHR data mining

EHR data mining

Monday 22 September 2014

electronic health records EHR

Open references

- Mining Electronic Health Records using Linked Data. Odgers DJ, Dumontier M. AMIA Jt Summits Transl Sci Proc. 2015 Mar 23;2015:217-21. eCollection 2015. PMID: 26306276 (Free)


- Building the graph of medicine from millions of clinical narratives, 2014 -

- Pathak, J., Kho, A. N. & Denny, J. C. Electronic health records-driven phenotyping: challenges, recent advances, and perspectives. J. Am. Med. Inform. Assoc. 20, e206–e211 (2013).

- Cole, T. S. et al. Profiling risk factors for chronic uveitis in juvenile idiopathic arthritis: a new model for EHR-based research. Pediatr. Rheumatol. Online J. 11, 45 (2013).

- Blair, D. R. et al. A nondegenerate code of deleterious variants in mendelian Loci contributes to complex disease risk. Cell 155, 70–80 (2013).

- Jensen, P. B., Jensen, L. J. & Brunak, S. Mining electronic health records: towards better research applications and clinical care. Nat. Rev. Genet. 13, 395–405 (2012).

- Miller, R. A history of the INTERNIST-1 and Quick Medical Reference (QMR) computer-assisted diagnosis projects, with lessons learned. Yearb. Med. Inform. 121–136 (2010).

- Electronic health records: Implications for drug discovery. Yao L, Zhang Y, Li Y, Sanseau P, Agarwal P. Drug Discov Today. 2011 Jul;16(13-14):594-9. doi : 10.1016/j.drudis.2011.05.009 PMID: 21624499 (Free)

- Saria, S. et al. Integration of early physiological responses predicts later illness severity in preterm infants. Sci. Transl. Med. 2, 48ra65 (2010).

- Valderas, J. M. et al. Defining comorbidity: implications for understanding health and health services. Ann. Fam. Med. 7, 357–363 (2009).

- Rzhetsky, A. et al. Probing genetic overlap among complex human phenotypes. Proc. Natl Acad. Sci. USA 104, 11694–11699 (2007).

- Heckerman, D. E., Horvitz, E. & Nathwani, B. N. Toward normative expert systems: Part I. The Pathfinder Project. Methods Inf. Med. 31, 90–105 (1992).

- Heckerman, D. E. & Nathwani, B. N. Toward normative expert systems: Part II. Probability-based representations for efficient knowledge acquisition and inference. Methods Inf. Med. 31, 106–116 (1992).

- Miller, R. A. et al. The INTERNIST-1/quick medical REFERENCE project—Status report. West. J. Med. 145, 816 (1986).

- Shortliffe, E. H. MYCIN: Computer-based Medical Consultations (Elsevier, 1976). Shwe, M. A. et al. Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base. Meth. Inform. Med. 30, 241–255 (1991).

- Charlson, M. E. et al. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J. Chronic Dis. 40, 373–383 (1987).

- de Groot, V. et al. How to measure comorbidity. a critical review of available methods. J. Clin. Epidemiol. 56, 221–229 (2003).

- Sorror, M. L. et al. Hematopoietic cell transplantation (HCT)-specific comorbidity index: a new tool for risk assessment before allogeneic HCT. Blood 106, 2912–2919 (2005).

Volk, M. L. et al. Modified Charlson comorbidity index for predicting survival after liver transplantation. Liver Transpl. 13, 1515–1520 (2007).

- Wenzel, S. E. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat. Med. 18, 716–725 (2012).

- Holmes, A. B. et al. Discovering disease associations by integrating electronic clinical data and medical literature. PLoS ONE 6, e21132 (2011).

- Lopez-Gonzalez, E., Herdeiro, M. T. & Figueiras, A. Determinants of under-reporting of adverse drug reactions. Drug Safety 32, 19–31 (2009).

- Classen, D. C. et al. ‘Global trigger tool’ shows that adverse events in hospitals may be ten times greater than previously measured. Health Affairs 30, 581–589 (2011).

- LePendu, P. et al. Annotation analysis for testing drug safety signals using unstructured clinical notes. J. Biomed. Semantics 3 (Suppl 1): S5 (2012).

- LePendu, P. et al. Analyzing patterns of drug use in clinical notes for patient safety. AMIA Summits Transl. Sci. Proc. 2012, 63 (2012).

- Stang, P. E. et al. Advancing the science for active surveillance: rationale and design for the Observational Medical Outcomes Partnership. Ann. Intern. Med. 153, 600–606 (2010).

- De Keulenaer, G. W. & Brutsaert, D. L. The heart failure spectrum time for a phenotype-oriented approach. Circulation 119, 3044–3046 (2009).

- Kohane, I. S. The twin questions of personalized medicine: who are you and whom do you most resemble? Genome Med. 1, 4 (2009).

- Lasko, T. A., Denny, J. C. & Levy, M. A. Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data. PLoS ONE 8, e66341 (2013).

- National Research Council Committee on, A.F.f.D.a.N.T.o.D. The National Academies Collection: Reports funded by National Institutes of Health, in Toward Precision Medicine: Building a Knowledge Network for Biomedical Research and a New Taxonomy of Disease (National Academies Press, 2011).

- Schneeweiss, S. et al. High-dimensional propensity score adjustment in studies of treatment effects using health care claims data. Epidemiology 20, 512–522 (2009).

- Brookhart, M. A. et al. Confounding control in healthcare database research: challenges and potential approaches. Med. Care 48 (6 Suppl): S114–S120 (2010).

- Lowe, H. J. et al. STRIDE–An integrated standards-based translational research informatics platform. in AMIA Annu. Symp. Proc. 2009, 391–395 (2009).

- Bodenreider, O. & McCray, A. T. Exploring semantic groups through visual approaches. J. Biomed. Inform. 36, 414–432 (2003).

- Parai, G. K. et al. The Lexicon Builder Web Service: building custom lexicons from two hundred biomedical ontologies. in AMIA Annu. Symp. Proc. 2010, 587–591 (2010).

- Wu, S. T. et al. Unified Medical Language System term occurrences in clinical notes: a large-scale corpus analysis. J. Am. Med. Inform. Assoc. 19, e149–e156 (2012).

- Xu, R., Musen, M. A. & Shah, N. H. A comprehensive analysis of five million UMLS metathesaurus terms using eighteen million MEDLINE citations. in AMIA Annu. Symp. Proc. 2010, 907–911 (2010).

- Chapman, W.W. et al. A simple algorithm for identifying negated findings and diseases in discharge summaries. J. Biomed. Inform. 4, 301–310 (2001).

- Chapman, W. W., Chu, D. & Dowling, J. N. BioNLP ’07 Proceedings of the Workshop on BioNLP 2007: Biological, Translational, and Clinical Language Processing , 81–88 (Association for Computational Linguistics Stroudsburg, PA, USA, 2007).

- Lucene, A. A high-performance, full-featured text search engine library. (2005).

- Sauerbrei, W. & Blettner, M. Interpreting results in 2 x 2 tables: part 9 of a series on evaluation of scientific publications. Dtsch. Arztebl. Int. 106, 795–800 (2009).

- Sainani, K. L. The problem of multiple testing. PM&R 1, 1098–1103 (2009).

- Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan Kaufmann, 1988).

- Chen, J. & Altman, R. B. Automated Physician Order Recommendations and Outcome Predictions by Data-Mining Electronic Medical Records. AMIA Summit Transl. Bioinform. 206–210 (2014).

- Klann, J., Schadow, G. & Downs, S. M. A method to compute treatment suggestions from local order entry data. in AMIA Annu. Symp. Proc. 2010, 387–391 (2010).

- Klann, J., Schadow, G. & McCoy, J. A recommendation algorithm for automating corollary order generation. in AMIA Annu. Symp. Proc. 2009, 333–337 (2009).

- Simon, N. et al. A sparse-group lasso. J. Comp. Graph. Stat. 22, 231–245 (2013).

- Zeeberg, B. R. et al. GoMiner: a resource for biological interpretation of genomic and proteomic data. Genome Biol. 4, R28 (2003).

- Rhee, S. Y. et al. Use and misuse of the gene ontology annotations. Nat. Rev. Genet. 9, 509–515 (2008).

- Tirrell, R. et al. An ontology-neutral framework for enrichment analysis. AMIA Annu. Symp. Proc. 2010, 797–801 (2010).

- Shah, N. H. et al. Annotation and query of tissue microarray data using the NCI Thesaurus. BMC Bioinformatics 8, 296 (2007).

- Mort, M. et al. In silico functional profiling of human disease-associated and polymorphic amino acid substitutions. Human Mutation 31, 335–346 (2010).

- Michaud, K. & Wolfe, F. The association of rheumatoid arthritis and its treatment with sinus disease. J. Rheumatol. 33, 2412–2415 (2006).

- Turesson, C., Jacobsson, L. T. & Matteson, E. L. Cardiovascular co-morbidity in rheumatic diseases. Vasc. Health Risk Manag. 4, 605–614 (2008).

- John, H. et al. Cardiovascular co-morbidity in early rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 23, 71–82 (2009).

- Myhre, S. et al. Additional gene ontology structure for improved biological reasoning. Bioinformatics 22, 2020–2027 (2006).

- Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

- Grossmann, S. et al. Improved detection of overrepresentation of Gene-Ontology annotations with parent child analysis. Bioinformatics 23, 3024–3031 (2007).